1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Instrumentación

Carrera: Ingeniería Electrónica

Clave de la asignatura: **ECM-0423**

Horas teoría-horas práctica-créditos **3-2-8**

2.- HISTORIA DEL PROGRAMA

Lugar y Fecha de Elaboración o Revisión	Participantes	Observaciones (Cambios y Justificación)
Instituto Tecnológico de Orizaba, del 25 al 29 de agosto del 2003.	Representante de las academias de ingeniería electrónica de los Institutos Tecnológicos.	Reunión Nacional de Evaluación Curricular de la Carrera de Ingeniería Electrónica.
Institutos Tecnológicos de Minatitlán y Nuevo León, de septiembre a noviembre del 2003	Academias de Ingeniería Electrónica.	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de Mexicali, del 23 al 27 de febrero 2004	Comité de consolidación de la carrera de Ingeniería Electrónica.	Definición de los programas de estudio de la carrera de Ingeniería Electrónica.

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores				
Asignaturas	Temas			
Física II	Dinámica de los fluidosTermodinámica			
Control I	 Modos de control Análisis de respuesta en el tiempo 			

Posteriores					
Asignaturas	Temas				
Modulo de					
Especialidad					

b). Aportación de la asignatura al perfil del egresado

Le permite

- Operar y seleccionar elementos de instrumentación haciendo uso correcto de manuales y hojas de datos de ellos.
- Analizar, diseñar y aplicar los elementos de instrumentación además de seleccionar el tipo de controlador adecuado al proceso.
- Desarrollar la habilidad para comunicarse con efectividad para compartir conocimientos y experiencias en el ámbito profesional, al redactar y exponer temas o proyectos de aplicación de los diferentes elementos de instrumentación.
- Gestionar su autoaprendizaje, como un compromiso para actualizarse en su disciplina al exponer temas sobre elementos de instrumentación o su aplicación y que no fueron impartidos en clase.

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

El alumno seleccionará y aplicará los diferentes sistemas de medición y control de variables físicas en procesos industriales.

5.- TEMARIO

Unidad	Temas		Subtemas
1	Introducción a la	1.1	Introducción a la instrumentación
	Instrumentación y normas	1.2	Definiciones y conceptos
	-	1.3	Simbología, Normas y Sistema de Unidades
		1.4	Norma SAMA
		1.5	Norma ISA
2	Tipos de sensores	2.1	Sensores de Presión
		2.2	Sensores de Flujo
		2.3	Sensores de Temperatura
		2.4	Sensores de Nivel
		2.5	Sensores para otras variables físicas: peso, velocidad, conductividad, luz, PH, otros
		2.6	Criterios para la Selección de un sensor

5.- TEMARIO (Continuación)

Unidad	Temas		Subtemas
3	Actuadores finales de control	3.1	Tipos de actuadores: Eléctricos, Neumáticos e Hidráulicos.
		3.2	1
			Tipos de pistones
			Otro tipo de actuadotes
		3.5	Criterios para la Selección de un actuador
4	Controladores	4.1	Aplicaciones de Sistemas de Lazo Abierto y Lazo Cerrado
		4.2	Modos de Control aplicados en instrumentación:
			4.2.1 On-Off
			4.2.2 Proporcional4.2.3 Proporcional + Integral
			4.2.4 Proporcional + Integral + derivativo
		4.3	Criterios para la Selección de un controlador
		4.4	Sintonización de Controles
		4.5	Aplicaciones de los controladores
5	Tópicos de control	5.1	Adquisición de datos
	asistido por computadora	5.2	Control supervisorio remoto
		5.3	Control digital directo.
		5.4	
		5.5	Control distribuido

6.- APRENDIZAJES REQUERIDOS

Conocer:

- Modos de control
- Sintonización de Controladores
- Principios básico de programación

7. SUGERENCIAS DIDÁCTICAS

- Propiciar la búsqueda y selección de información de los temas del curso.
- Diseñar practicas para que el alumno las desarrolle en el laboratorio y solicitar el informe correspondiente.
- Fomentar la aplicación de software para la solución de problemas.
- Promover la solución de problemas en forma individual y grupal.
- Promover visitas industriales para observar aplicaciones de Instrumentación y control.
- Promover la implementación de aplicaciones afines a la materia
- Dar seguimiento al desarrollo de proyectos

8.- SUGERENCIAS DE EVALUACION

- Revisar los reportes y actividades realizadas en el laboratorio, de acuerdo a un formato previamente establecido¹.
- Considerar la participación en las actividades programadas en la materia:
 - o Participación en clases
 - o Cumplimiento de tareas y ejercicios
 - Exposición de temas
 - o asistencia
 - o paneles
 - o participación en congresos o concursos
 - o reportes de visitas industriales
- Aplicar exámenes escritos considerando que no sea el factor decisivo para la acreditación del curso.
- Considerar el desempeño integral del alumno.

9.- ACTIVIDADES DE APRENDIZAJE

Unidad 1: Introducción a la Instrumentación y normas

Objetivo Educacional		Actividades de Aprendizaje	Fuentes de Información
El alumno identificará las normas utilizadas en la instrumentación de los procesos industriales	1.1	Buscar y seleccionar información de normas utilizadas en instrumentación Identificar en planos de procesos reales las normas utilizadas en instrumentación	

¹ Según formato anexo en el documento

Unidad 2: Tipos de Sensores

Objetivo Educacional		Actividades de Aprendizaje	Fuentes de Información
El alumno	2.1	Buscar y seleccionar información de	
seleccionará y		sensores utilizados en	
aplicará técnicas de		instrumentació	
caracterización de	2.2	Seleccionar el sensor al tipo de	
sensores utilizados		proceso	
en la instrumentación	2.3	Aplicar técnicas de caracterización	
de los procesos		de sensores	
industriales			

Unidad 3: Actuadores finales de control

Objetivo Educacional		Actividades de Aprendizaje	Fuentes de Información
El alumno seleccionará actuadores y aplicará técnicas de caracterización de tipos de actuadores utilizados en la instrumentación de	3.1 3.2 3.3	Buscar y seleccionar información de actuadores utilizados en instrumentación Seleccionar el actuador al tipo de proceso Aplicar técnicas de caracterización de actuadores y su implementación en un proceso	
los procesos industriales		cii dii pioocso	

Unidad 4: Controladores

Objetivo Educacional		Actividades de Aprendizaje	Fuentes de Información
El alumno seleccionara modos de control y aplicara	4.1	Buscar y seleccionar información de controladores utilizados en instrumentación	
técnicas de sintonización de controladores	4.2	Analizar los efectos y contribuciones de los modos de control a un proceso	
utilizados en la instrumentación de	4.3	Seleccionar los modos de control al tipo de proceso	
los procesos industriales	4.4	Aplicar técnicas de sintonización de controladores y su implementación en un proceso	

Unidad 5: Tópicos de control asistido por computadora

Objetivo Educacional		Actividades de Aprendizaje	Fuentes de Información
El alumno analizará y	5.1	Buscar y seleccionar información de	
aplicará los		elementos que intervienen en un	
elementos que		sistema asistido por computadora	
intervienen en un	5.2	Analizar las configuraciones más	
sistema de control		comunes de intervención por	
asistido por		computadora: monitoreo, control	
computadora		digital directo y control supervisorio	
	5.3	Aplicar de manera integral los	
		elementos utilizados en la	
		instrumentación utilizando control	
		distribuido para procesos	
		industriales.	

10.- FUENTES DE INFORMACIÓN

John Webb Industrial Control Electronics Ed. Wiley and sons

2 Pallas Areny R. Sensores y acondicionadores de señal Ed. Marcombo

3 Peter Hauptmann Sensor: principles and applications Ed. Prentice Hall.

4 Norman A. Anderson Instrumentation for process measurement and control Ed. Foxboro

5 Antonio Creuss, Instrumentación Industrial Ed. Marcombo

Douglas M. Coisidine
 Manual de instrumentación aplicada
 Ed. Mc. Graw Hill

11.- PRÁCTICAS

- 1 Elaborar diagramas de procesos reales usando las simbologías (ISA, SAMA).
- 2 Identificar en un proceso real, la normatividad vigente.
- 3 Caracterización de sensores.
- 4 Calibración de transmisores e indicación y registro de la variable física.
- 5 Caracterización de actuadores.
- 6 Calibración de actuadores.
- 7 Sintonización de un controlador en un proceso de lazo abierto y lazo cerrado.
- 8 Sintonización de los controladores en cascada.
- 9 Implementación de un sistema de instrumentación de control supervisorio remoto.
- 10 Diseñar y simular un proceso de instrumentación virtual.
- 11 Diseñar un proceso en el cual aplique los conocimientos adquiridos cuidando el impacto ambiental de su entorno.