1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: Análisis Numérico

Carrera: Ingeniería Electrónica

Clave de la asignatura: ECC-0402

Horas teoría-Horas práctica-Créditos 4-2-10

2.- HISTORIA DEL PROGRAMA

Lugar y fecha de elaboración o revisión	Participantes	Observaciones (cambios y justificación)
Instituto Tecnológico de Orizaba, del 25 al 29 de agosto del 2003.	Representante de las academias de ingeniería electrónica de los Institutos Tecnológicos.	Reunión nacional de evaluación curricular de la carrera de Ingeniería Electrónica.
Instituto tecnológico de Tuxtla Gutiérrez, de Septiembre a Noviembre del 2003	Academias de Ingeniería Electrónica y Ciencias Básicas	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de Mexicali, del 23 al 27 de febrero 2004	Comité de consolidación de la carrera de Ingeniería Electrónica.	Definición de los programas de estudio de la carrera de Ingeniería Electrónica.

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores				
Asignaturas	Temas			
Programación I	Diseño de Algoritmos.Programación en un lenguaje de alto nivel			
Matemáticas I, II	- Calculo diferencial e integral.			

Posteriores					
Asignaturas	Temas				
Introducción a las	- Determinación				
telecomunicaciones	de errores.				

b). Aportación de la asignatura al perfil del egresado

Desarrolla un método de trabajo y una metodología lógica de solución de problemas

4.- OBJETIVO(S) GENERAL(ES) DEL CURSO

El alumno conocerá los métodos numéricos y los aplicará en la solución de problemas de ingeniería.

5.- TEMARIO

ntroducción al análisis umérico nálisis del error	1.1 1.2 2.1	ingeniería
nálisis del error	2.1	•
	2.2	 2.1.2 Exactitud y precisión. Errores. 2.2.1 Errores de redondeo. 2.2.2 Errores de propagación. 2.2.3 Error numérico total.
folución de ecuaciones Igebraicas.	3.13.23.3	 3.1.1 Métodos de posición falsa. 3.1.2 Método de la bisección. 3.1.3 Método de dos puntos y orden de convergencia. Métodos abiertos. 3.2.1 Método de punto fijo. 3.2.2 Método de Newton-Raphson. 3.2.3 Método de la secante.
		gebraicas.

5.- TEMARIO (Continuación)

Unidad	Temas		Subtemas
4	Solución de sistemas de ecuaciones lineales y no lineales y valores característicos	4.1	4.1.1 Método de Gauss.4.1.2 Método de Gauss-Jordan.4.1.3 Método de Gauss-Seidel.
5	Ajuste de funciones.	5.15.25.3	Interpolación. 5.1.1 Diferencias divididas de Newton para la interpolación de polinomios. 5.1.2 Polinomio de Lagrange. Aproximación. 5.2.1 Polinomial con números cuadrados. 5.2.2 Multilineal con mínimos cuadrados. Ajuste por interpolación segmentaria (Spline)
6	Diferenciación e Integración Numérica.	6.1 6.2 6.	Integración. 6.1.1 Método del trapecio 6.1.2 Método de Simpson. 6.1.3 Método de Newton-Cotes. Diferenciación. 2.1 Extrapolación de Richardson.
7	Solución numérica de ecuaciones diferenciales ordinarias y parciales	7.17.27.3	Solución de ecuaciones diferenciales ordinarias 7.1.1 Métodos de Euler 7.1.2 Métodos de Runge-Kutta Solución de sistemas de ecuaciones diferenciales ordinarias Solución de ecuaciones diferenciales parciales 7.3.1 Método de las diferencias finitas 7.3.2 Método del elemento finito.

6.- APRENDIZAJES REQUERIDOS

Conceptos básicos de cálculo diferencial e Integral, Análisis vectorial, Álgebra lineal y Ecuaciones diferenciales

7.- SUGERENCIAS DIDÁCTICAS

- Propiciar la búsqueda y selección de información de los temas del curso.
- Proponer ejemplos, ejercicios y problemas para facilitar el razonamiento y la reflexión.
- Proporcionar casos o ejemplos de problemas relacionados con la ingeniería electrónica.
- Generar actividades de aprendizaje que despierten el interés y motivación del alumno, resolviendo problemas prácticos que ayuden a comprender y aprender significativamente los conceptos.
- Propiciar la comprobación de resultados analíticos con resultados simulados.
- Diseñar la programación de algunos métodos representativos, en un lenguaje de alto nivel
- Utilizar software actualizado (matlab, mathcad, matemathica, maple) como ayuda didáctica en todas las unidades de aprendizaje.
- Consultar direcciones de Internet relacionadas con temas propuestos de las unidades de aprendizaje.

8.- SUGERENCIAS DE EVALUACIÓN

- Considerar la participación en las actividades programadas en la materia:
 - o Participación en clases
 - o Cumplimiento de tareas y ejercicios
 - Exposición de temas
 - Asistencia
 - o Practicas desarrolladas en clase y extraclase
- Aplicar exámenes escritos considerando que no sea el factor decisivo para la acreditación del curso.
- Considerar el desempeño integral del alumno

9.- UNIDADES DE APRENDIZAJE

Unidad 1: Introducción al análisis numérico.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El alumno conocerá el concepto del análisis numérico y	1.1 Investigar los antecedentes históricos del análisis numérico y exponerlo de manera grupal.	
su importancia en la ingeniería.	1.2 Identificar las aplicaciones del análisis numérico y su relación con la	1
	computación 1.3 Analizará problemas de ingeniería que se caracterizan por una solución numérica abierta. Identificará importancia del análisis numérico en la solución.	2

Unidad 2: Análisis del error.

Objetivo Educacional		Actividades de Aprendizaje	Fuentes de Información
El alumno analizará y		Identificar los conceptos de	1
calculará el error y su		aproximaciones: Cifras significativas,	
efecto en		Exactitud y precisión	4
aplicaciones de	2.2	Identificar los tipos de errores: Por	
ingeniería.		redondeo, truncamiento, absoluto y relativo.	6
		Resolver problemas que impliquen el calculo de diferentes tipos de errores.	7
	2.4	Caracterizar los problemas de generación y propagación de errores,	8
		así como sus métodos de evaluación.	9
	2.5	Investigar el efecto de los diferentes	
		tipos de errores en aplicaciones de	10
		ingeniería. Presentar en forma grupal	
		los resultados.	

Unidad 3: Solución de ecuaciones algebraicas.

Objetivo Educacional		Actividades de Aprendizaje	Fuentes de Información
El alumno conocerá y	3.1		1
aplicará los métodos		métodos de intervalos.	
numéricos en la	3.2	·	2
solución de		posición falsa en la solución de	_
ecuaciones		problemas.	3
algebraicas.	3.3	y ,	
		bisección en la solución de problemas.	4
	3.4	Identificar y aplicar el método de dos	
		puntos y orden de convergencia en la	8
		solución de problemas.	
	3.5	Identificar las características de los	9
		métodos abiertos.	
	3.6	Identificar y aplicar el método del punto	10
		fijo, Newton-Raphson y secante en la	
		solución de problemas. Comparar los	11
		resultados analítico y computacional.	
	3.7	Identificar las características de los	
		métodos de obtención de Raíces de	
		polinomios.	
	3.8	Identificar y aplicar el método de Newton-	
		Raphson para raíces complejas.	
	3.9	Analizar la aproximación y convergencia	
		de los métodos estudiados.	

Unidad 4: Solución de sistemas de ecuaciones lineales y no lineales y valores característicos.

Objetivo Educacional		Actividades de Aprendizaje	Fuentes de Información
El alumno aplicará los métodos	4.1	Identificar los sistemas de ecuaciones lineales.	
numéricos para la solución de sistemas	4.2	Identificar y Aplicar los Métodos de Gauss, Gauss-Jordan y Gauss-Seidel en	2
de ecuaciones lineales y no		la solución de problemas. Comparar los resultados analítico y computacional.	3
lineales.	4.3	Comparar las ventajas y desventajas de cada método.	4
	4.4	Investigar problemas de ingeniería que se resuelven por medio de sistemas de	5
	4.5	ecuaciones lineales. Identificar los sistemas de ecuaciones no	7
	4.6	lineales. Identificar y Aplicar computacionalmente	8
		el método de Newton-Raphson para sistemas no lineales en la solución de	9
	4.7	problemas. dentificar los valores característicos	10
	4.8	Aplicar el método iterativo para determinar valores característicos. Comparar los resultados analítico y computacional.	11

Unidad 5: Ajuste de funciones.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El alumno aplicará	5.1 Investigar el concepto de interpolación y	1
métodos de	sus aplicaciones en ingeniería. Discutir	2
interpolación y de	los resultados en forma grupal.	4
ajuste de funciones	5.2 Identificar y aplicar computacionalmente	5
en la solución de	métodos de interpolación en la solución	6
problemas.	de problemas.	7
	5.3 Identificar y aplicar computacionalmente	8
	métodos de ajuste de funciones en la	9
	solución de problemas.	10
		11

Unidad 6: Diferenciación e Integración Numérica.

Objetivo Educacional		Actividades de Aprendizaje	Fuentes de Información
El alumno aplicará	6.1	Investigar las ventajas y desventajas de	2
los métodos de		la derivación e integración numérica.	4
derivación e		Discutir los resultados en forma grupal.	5
integración numérica	6.2	Identificar y calcular	6
a problemas de		computacionalmente los métodos de	7
ingeniería.		integración numérica en la solución de	8
		problemas.	9
	6.3	Identificar y calcular	10
		computacionalmente los métodos de	11
		derivación numérica en la solución de	12
		problemas.	

Unidad 7: Solución numérica de ecuaciones diferenciales ordinarias y parciales.

Objetivo Educacional	Actividades de Aprendizaje	Fuentes de Información
El alumno conocerá y aplicará métodos numéricos para	7.1 Investigar la importancia de las ecuaciones diferenciales ordinarias y parciales en ingeniería. Comparar	2
aproximar soluciones de	aplicaciones que utilicen ecuaciones diferenciales ordinarias. Discutir los	4
ecuaciones diferenciales.	resultados en forma grupal. 7.2 Identificar los métodos de solución de	5
	ecuaciones diferenciales ordinarias. Aplicarlos computacionalmente en la	6
	solución de problemas de ingeniería. 7.3 Identificar los métodos de solución de	7
	sistemas de ecuaciones diferenciales ordinarias. Aplicarlos	8
	computacionalmente en la solución de problemas de ingeniería.	9
	7.4 Identificar los métodos de solución de sistemas de ecuaciones diferenciales	10
	parciales. Aplicarlos computacionalmente en la solución de	11
	problemas de ingeniería.	

10.- FUENTES DE INFORMACIÓN

- Conte S. D. & Boor C.
 Elementary Numerical Analisis
 Ed. Mc. Graw-Hill Book Co.
- 2. Burden R. Y Faires J.D. Análisis Numerico Ed. Thonson Learning
- Curtis F.G.
 Análisis Numérico
 Ed. Alfa-Omega
- Chapra C. S. Y Canale R.
 P Métodos Numéricos Para Ingeniería
 Ed. Mc Graw-Hill
- 5. Gómez J., Escobar., Gómez A., Guerrero G. y Otros Elementos de Métodos Numéricos Para Ingeniería Ed. Mc Graw-Hill
- 6. Iriarte V. B. R. Métodos Numéricos Ed. Trillas
- 7. Kincaid D. y Cheney W. Análisis Numérico Ed. Addison-Wesley
- 8. Maron M. y Lopez R. J. Análisis Numérico Ed. CECSA
- Mathews J. y Fink K. D. Métodos Numéricos con Matlab Ed. Prentice- Hall
- Nakamura S.
 Análisis Numérico y Visualización Grafica Con Matlab
 Ed. Pearson Education

 Nieves A. y Domínguez F. C. Métodos Numéricos Aplicados a la Ingeniería Ed. CECSA

12. Smith A. W. Análisis Numérico Ed. Prentice-Hall

11.- PRÁCTICAS