1.- DATOS DE LA ASIGNATURA

Nombre de la asignatura: **Teoría Electromagnética**

Carrera: Ingeniería Electrónica

Clave de la asignatura: **ECC-0434**

Horas teoría-horas práctica-créditos 4–2–10

2.- HISTORIA DEL PROGRAMA

Lugar y Fecha de Elaboración o Revisión	Participantes	Observaciones (Cambios y Justificación)
Instituto Tecnológico de Orizaba, del 25 al 29 de agosto del 2003.	Representante de las academias de ingeniería electrónica de los Institutos Tecnológicos.	Reunión Nacional de Evaluación Curricular de la Carrera de Ingeniería Electrónica.
Institutos Tecnológicos de Culiacán y Los Mochis, de septiembre a noviembre del 2003	Academias de Ingeniería Electrónica.	Análisis y enriquecimiento de las propuestas de los programas diseñados en la reunión nacional de evaluación
Instituto Tecnológico de Mexicali, del 23 al 27 de febrero 2004	Comité de consolidación de la carrera de Ingeniería Electrónica.	Definición de los programas de estudio de la carrera de Ingeniería Electrónica.

3.- UBICACIÓN DE LA ASIGNATURA

a). Relación con otras asignaturas del plan de estudio

Anteriores		Posteriores		
Asignaturas	Temas	Asignaturas	Temas	
Física III	- La teoría electromagnética requiere un conocimiento sólido de campos	Máquinas Eléctricas	- Principios y fundamentos de máquinas eléctricas.	
	electrostáticos y magnéticos	Introducción a las telecomunicaciones	- Introducción a los sistemas de comunicación.	
Matemáticas III	- Sistemas de Coordenadas - Funciones vectorial de una variable real - Funciones de varias variables - Integrales múltiples			

b). Aportación de la asignatura al perfil del egresado

Le permite analizar, diseñar, implementar y mantener sistemas electromagnéticos, aplicados a la electrónica y sistemas de comunicaciones.

4. OBJETIVO GENERAL DEL CURSO

El alumno comprenderá y analizará los fenómenos electromagnéticos que fundamentan la operación de los diferentes sistemas electromagnéticos, aplicados a dispositivos eléctricos o electrónicos de comunicaciones, control automático e instrumentación, que permitan su diseño, implementación, operación y mantenimiento.

5. TEMARIO

Unidad	Temas		Subtemas
1	Campo Electrostático y Corrientes Eléctricas	1.1 1.2	Ley de Coulomb y Campo Eléctrico. Ley de Gauss
	Estacionarias	1.3	Potencial Eléctrico debido a diferentes distribuciones de carga conductores y dieléctricos.
		1.4	Ecuación de Poisson y Laplace (Problemas con Valores en la Frontera en Coordenadas Cartesianas, Cilíndricas
		1.5	y Esféricas). Densidad de Corriente, Ecuación de Continuidad, Condiciones de Frontera. Ley de la Corriente de Kirchhoff, Ley de Joule.
2	Ecuaciones de Maxwell y Propagación de Ondas	2.1 2.2	Corriente de desplazamiento. Forma integral y Diferencial de las
	electromagnéticas	2.3	Ecuaciones de Maxwell y aplicaciones. Ondas Electromagnéticas Planas en medios con y sin pérdidas.
		2.4 2.5	Potencia y Vector Poynting. Reflexión de Ondas en incidencia normal oblicua.
3	Líneas de Transmisión	3.1 3.2 3.3 3.4	Introducción. Parámetros de las líneas de transmisión. Ecuaciones de las líneas de transmisión. Impedancia de entrada, Relación de onda estacionaria Carta de Smith.
		3.5	Acoplamiento de una línea de transmisión.
		3.6	Ecuaciones de Maxwell aplicadas a líneas de transmisión.
		3.7	Líneas de transmisión de microcintas.
4	Guías de Onda.	4.1	Introducción a las guías de onda rectangulares.
		4.2 4.3 4.4 4.5 4.6	Modos magnéticos transversales (MT). Modos eléctricos transversales (ET) Propagación de las ondas en la guía. Transmisión de potencia y atenuación. Resonadores y filtros en las guías de
			onda.

6. APRENDIZAJES REQUERIDOS

Aplicar:

- Cálculo diferencial e integral
- Análisis vectorial
- Ecuaciones diferenciales ordinarias y parciales
- Series de Fourier
- Campos Eléctricos y magneticos

7.- SUGERENCIAS DIDÁCTICAS

- Propiciar la búsqueda y selección de información de los temas del curso.
- Proponer ejemplos, ejercicios y problemas para facilitar el razonamiento y la reflexión matemática de los fenómenos y leyes que explican la teoría electromagnética.
- Proporcionar casos o ejemplos de problemas reales, cotidianos y actuales relacionados con la ingeniería eléctrica y electrónica.
- Generar actividades de aprendizaje que despierten el interés y motivación del alumno, resolviendo problemas prácticos que ayuden a comprender y aprender significativamente los conceptos, fundamentos y leyes del electromagnetismo.
- Utilizar software actualizado (matlab, mathcad, matemathica, maple) como ayuda didáctica en todas las unidades de aprendizaje.
- Consultar direcciones de Internet relacionadas con temas propuestos de las unidades de aprendizaje.
- Enriquecer de manera permanente las prácticas del Laboratorio electromagnetismo.
- Organizar y asistir a conferencias.
- Motivar entre alumnos y maestros la creación y presentación de material didáctico utilizando todos los medios al alcance.(software de presentaciones, rotafolio, retroproyector etc.)
- Utilizar películas y videos que tratan los temas del programa.
- Programar visitas a las industrias relacionadas.
- Desarrollar modelos didácticos que permitan comprender los conceptos teóricos.

8.- SUGERENCIAS DE EVALUACIÓN

- Revisar los reportes y actividades realizadas en el laboratorio, de acuerdo a un formato previamente establecido¹.
- Considerar la participación en las actividades programadas en la materia:
 - o Participación en clases
 - o Cumplimiento de tareas y ejercicios
 - o Exposición de temas
 - o asistencia
 - o paneles
 - o participación en congresos o concursos
- Aplicar exámenes escritos considerando que no sea el factor decisivo para la acreditación del curso.
- Considerar el desempeño integral del alumno

9. UNIDADES DE APRENDIZAJE

Unidad 1: Campo Electrostático y Corrientes Eléctricas Estacionarias

Objetivo Educacional	Actividades de Aprendizaje		Fuentes de Información
El estudiante aplicará las leyes	1.1	Analizar y deducir los conceptos de campo y Potencial eléctrico.	
fundamentales del Campo Electromagnético.	1.2	Resolver problemas donde se involucre la Ley de Gauss y distribuciones- de Carga Lineal, sup. y	
	1.3	volumétrica.	1 al 6
	1.4	Poisson y Laplace Analizar el concepto de densidad de	
	1.4	corriente y deducir la ecuación de continuidad.	

¹ Según formato anexo en el documento

Unidad 2: Ecuaciones de Maxwell y Propagación de Ondas electromagnéticas

Objetivo Educacional	Actividades de Aprendizaje		Fuentes de Información
El alumno deducirá y aplicará las ecuaciones de	2.1	Repasar los conceptos de bio-savart, ley de Lenz, ley de ampere, Ley de Faraday	
Maxwell para campos variables en el tiempo y la propagación de Ondas Electromagnéticas	2.2	Deducir las Ecuaciones de Maxwell en su forma integral y diferencial. Aplicar las Ecuaciones de Maxwell a la propagación de Ondas Electromagnéticas	

Unidad 3: Líneas de Transmisión

Objetivo Educacional		Actividades de Aprendizaje	Fuentes de Información
El alumno aplicará la	3.1	Deducir las Ecuaciones de las Líneas	
Teoría de los		de transmisión y las magnitudes	
Campos		características.	
Electromagnéticos y	3.2	Usar la carta de Smith en la solución	
Circuitos Eléctricos		de problemas.	
para resolver	3.3	Resolver problemas de aplicación	
problemas de Líneas		práctica	
de Transmisión		•	

Unidad 4: Guías de Onda

Objetivo Educacional		Actividades de Aprendizaje	Fuentes de Información
El alumno aplicará	4.1	Analizar el comportamiento general de	
las		las Ondas EM en una guía de onda	
Ecuaciones de		mediante La Ecuación Vectorial de	
Maxwell en el estudio		Helmhotz y las Ecuaciones de	
de las Guías de Onda		Maxwell.	
TEM TM y TE.	4.2	Deducir los diferentes parámetros en	
		los modos TEM, TM y TE.	

10.- FUENTES DE INFORMACIÓN

- David K Cheng Fundamentos de Electromagnetismo para Ingeniería Ed. Addison-Wesley Iberoamericana
- 2. M. Sadiku
 Elementos de Electromagnetismo
 Ed. CECSA
- 3. Clayton R. Paul, Keith W. Whites Introduction to Electromagnetic Fields Ed. Mc Graw Hill
- 4. David J. Griffiths
 Introduction to Electrodynamics (3rd. Edition)
- Reitz Milford Chrysty
 Fundamentos de la Teoría Electromagnética (4a. Edición)
 Ed. Addison Wesley
- 6. Hayt William H.
 Teoría Electromagnética
 Ed. Mc Graw Hill.

11.- PRÁCTICAS

- 1. Comprobación de la Ley de Ampere.- Corriente a través de un conductor calculando su campo magnético.
- 2. Comprobación de la ley de la magnetización de materiales ferromagnéticos por medio de solenoides y toroides calculando su intensidad y densidad de campo magnético al pasar una corriente eléctrica.
- 3. Realización de diversos circuitos magnéticos.
- 4. Verificación de las señales a través de las líneas de transmisión.
- 5. Simulaciones de las líneas de transmisión.
- 6. Simulación de transmisión de ondas.
- 7. Usar software actualizado para modelar y resolver problemas que involucren todos los contenidos del programa (EMTP, entre otros)